3.1.41 \(\int \frac {\sin (a+b x)}{\sqrt {c+d x}} \, dx\) [41]

Optimal. Leaf size=117 \[ \frac {\sqrt {2 \pi } \cos \left (a-\frac {b c}{d}\right ) S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}}+\frac {\sqrt {2 \pi } C\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (a-\frac {b c}{d}\right )}{\sqrt {b} \sqrt {d}} \]

[Out]

cos(a-b*c/d)*FresnelS(b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*2^(1/2)*Pi^(1/2)/b^(1/2)/d^(1/2)+Fresnel
C(b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*sin(a-b*c/d)*2^(1/2)*Pi^(1/2)/b^(1/2)/d^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {3387, 3386, 3432, 3385, 3433} \begin {gather*} \frac {\sqrt {2 \pi } \sin \left (a-\frac {b c}{d}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}}+\frac {\sqrt {2 \pi } \cos \left (a-\frac {b c}{d}\right ) S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]/Sqrt[c + d*x],x]

[Out]

(Sqrt[2*Pi]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) + (Sqrt[2
*Pi]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(Sqrt[b]*Sqrt[d])

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin {align*} \int \frac {\sin (a+b x)}{\sqrt {c+d x}} \, dx &=\cos \left (a-\frac {b c}{d}\right ) \int \frac {\sin \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}} \, dx+\sin \left (a-\frac {b c}{d}\right ) \int \frac {\cos \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}} \, dx\\ &=\frac {\left (2 \cos \left (a-\frac {b c}{d}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{d}+\frac {\left (2 \sin \left (a-\frac {b c}{d}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {b x^2}{d}\right ) \, dx,x,\sqrt {c+d x}\right )}{d}\\ &=\frac {\sqrt {2 \pi } \cos \left (a-\frac {b c}{d}\right ) S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}}+\frac {\sqrt {2 \pi } C\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (a-\frac {b c}{d}\right )}{\sqrt {b} \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.04, size = 121, normalized size = 1.03 \begin {gather*} -\frac {e^{-\frac {i (b c+a d)}{d}} \left (e^{2 i a} \sqrt {-\frac {i b (c+d x)}{d}} \Gamma \left (\frac {1}{2},-\frac {i b (c+d x)}{d}\right )+e^{\frac {2 i b c}{d}} \sqrt {\frac {i b (c+d x)}{d}} \Gamma \left (\frac {1}{2},\frac {i b (c+d x)}{d}\right )\right )}{2 b \sqrt {c+d x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]/Sqrt[c + d*x],x]

[Out]

-1/2*(E^((2*I)*a)*Sqrt[((-I)*b*(c + d*x))/d]*Gamma[1/2, ((-I)*b*(c + d*x))/d] + E^(((2*I)*b*c)/d)*Sqrt[(I*b*(c
 + d*x))/d]*Gamma[1/2, (I*b*(c + d*x))/d])/(b*E^((I*(b*c + a*d))/d)*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 99, normalized size = 0.85

method result size
derivativedivides \(\frac {\sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {d a -c b}{d}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {d a -c b}{d}\right ) \FresnelC \left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{d \sqrt {\frac {b}{d}}}\) \(99\)
default \(\frac {\sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {d a -c b}{d}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {d a -c b}{d}\right ) \FresnelC \left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{d \sqrt {\frac {b}{d}}}\) \(99\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)/(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*2^(1/2)*Pi^(1/2)/(b/d)^(1/2)*(cos((a*d-b*c)/d)*FresnelS(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)+si
n((a*d-b*c)/d)*FresnelC(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d))

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.30, size = 159, normalized size = 1.36 \begin {gather*} -\frac {\sqrt {2} {\left ({\left (-\left (i + 1\right ) \, \sqrt {\pi } \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {b c - a d}{d}\right ) + \left (i - 1\right ) \, \sqrt {\pi } \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {b c - a d}{d}\right )\right )} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {i \, b}{d}}\right ) + {\left (\left (i - 1\right ) \, \sqrt {\pi } \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \cos \left (-\frac {b c - a d}{d}\right ) - \left (i + 1\right ) \, \sqrt {\pi } \left (\frac {b^{2}}{d^{2}}\right )^{\frac {1}{4}} \sin \left (-\frac {b c - a d}{d}\right )\right )} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {i \, b}{d}}\right )\right )}}{4 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

-1/4*sqrt(2)*((-(I + 1)*sqrt(pi)*(b^2/d^2)^(1/4)*cos(-(b*c - a*d)/d) + (I - 1)*sqrt(pi)*(b^2/d^2)^(1/4)*sin(-(
b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(I*b/d)) + ((I - 1)*sqrt(pi)*(b^2/d^2)^(1/4)*cos(-(b*c - a*d)/d) - (I + 1
)*sqrt(pi)*(b^2/d^2)^(1/4)*sin(-(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(-I*b/d)))/b

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 107, normalized size = 0.91 \begin {gather*} \frac {\sqrt {2} \pi \sqrt {\frac {b}{\pi d}} \cos \left (-\frac {b c - a d}{d}\right ) \operatorname {S}\left (\sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) + \sqrt {2} \pi \sqrt {\frac {b}{\pi d}} \operatorname {C}\left (\sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) \sin \left (-\frac {b c - a d}{d}\right )}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(2)*pi*sqrt(b/(pi*d))*cos(-(b*c - a*d)/d)*fresnel_sin(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d))) + sqrt(2)*pi*
sqrt(b/(pi*d))*fresnel_cos(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-(b*c - a*d)/d))/b

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sin {\left (a + b x \right )}}{\sqrt {c + d x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)**(1/2),x)

[Out]

Integral(sin(a + b*x)/sqrt(c + d*x), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 2.44, size = 168, normalized size = 1.44 \begin {gather*} -\frac {\frac {i \, \sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (-\frac {\sqrt {2} \sqrt {b d} \sqrt {d x + c} {\left (\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac {i \, b c - i \, a d}{d}\right )}}{\sqrt {b d} {\left (\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}} - \frac {i \, \sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (-\frac {\sqrt {2} \sqrt {b d} \sqrt {d x + c} {\left (-\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}{2 \, d}\right ) e^{\left (\frac {-i \, b c + i \, a d}{d}\right )}}{\sqrt {b d} {\left (-\frac {i \, b d}{\sqrt {b^{2} d^{2}}} + 1\right )}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-1/2*(I*sqrt(2)*sqrt(pi)*d*erf(-1/2*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((I*b*c - I
*a*d)/d)/(sqrt(b*d)*(I*b*d/sqrt(b^2*d^2) + 1)) - I*sqrt(2)*sqrt(pi)*d*erf(-1/2*sqrt(2)*sqrt(b*d)*sqrt(d*x + c)
*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-I*b*c + I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sin \left (a+b\,x\right )}{\sqrt {c+d\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*x)/(c + d*x)^(1/2),x)

[Out]

int(sin(a + b*x)/(c + d*x)^(1/2), x)

________________________________________________________________________________________